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T1 image is a widely collected imaging sequence in various neuroimaging datasets, but it is rarely used to construct an individual-level
brain network. In this study, a novel individualized radiomics-based structural similarity network was proposed from T1 images. In
detail, it used voxel-based morphometry to obtain the preprocessed gray matter images, and radiomic features were then extracted
on each region of interest in Brainnetome atlas, and an individualized radiomics-based structural similarity network was finally built
using the correlational values of radiomic features between any pair of regions of interest. After that, the network characteristics of
individualized radiomics-based structural similarity network were assessed, including graph theory attributes, test–retest reliability,
and individual identification ability (fingerprinting). At last, two representative applications for individualized radiomics-based
structural similarity network, namely mild cognitive impairment subtype discrimination and fluid intelligence prediction, were
exemplified and compared with some other networks on large open-source datasets. The results revealed that the individualized
radiomics-based structural similarity network displays remarkable network characteristics and exhibits advantageous performances in
mild cognitive impairment subtype discrimination and fluid intelligence prediction. In summary, the individualized radiomics-based
structural similarity network provides a distinctive, reliable, and informative individualized structural brain network, which can be
combined with other networks such as resting-state functional connectivity for various phenotypic and clinical applications.

Key words: individualized structural similarity network; test–retest reliability; fingerprint; fluid intelligence prediction; mild cognitive
impairment discrimination.

Introduction
The human brain is functioned through the interactions among
brain regions, which can be quantified by the noninvasive MRI,
making it the most important tool to study the human brain
(Jiang 2013). Currently, there are two common MRI modalities
to reveal the connective relationships between regions: resting-
state functional MRI (rs-fMRI) and diffusion MRI (dMRI), providing
crucial insights about the functional and structural connectivity
of the whole brain. However, rs-fMRI and dMRI are not routine
diagnostic sequences in most clinical scanning, and to collect
high-quality data of either sequence is not very easy and needs
good cooperation from the subjects, which may further limit their
widespread usages in specific populations such as children and
neuropsychiatric patients. In contrast, structural MRI (sMRI) is an
easy-to-collect sequence that provides high-resolution anatomi-
cal information and exhibits a good signal-to-noise ratio and test–
retest reliability (Jing et al. 2018; Buimer et al. 2020), making it
the most widely collected imaging modality in an open-source
neuroimaging dataset.

Usually, the structural network generated from sMRI is the
group-level covariance network (Alexander-Bloch et al. 2013; Kuo
et al. 2020; Yun et al. 2020) that is constructed with the simi-
larity of morphological features from a group of subjects, but it
could not be used for individualized diagnosis and prediction. For
this reason, Tijms et al. (2012) firstly proposed an individualized
structural network based on the similarity between cubes with
3 × 3 × 3 voxels. After that, several subsequent studies have tried
to construct an individualized structural network from different
perspectives, and the key ideas behind them could be divided
into two categories: (i) directly use some kind of distance metric
to quantify the structural similarities between regions, such as
Kullback–Leibler similarity (Kong et al. 2014, 2015; Wang et al.
2016), Euclidean distance (Yu et al. 2018; Wang et al. 2020), differ-
ential similarity (Liu et al. 2018), and Jensen–Shannon similarity
(Li et al. 2021) and (ii) extract multiple morphological features
from each region to form a vector and calculate their similar-
ity as the connective value (Li, Yang, et al. 2017; Seidlitz et al.
2018). However, these methods mainly used a few macroscopic
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structural descriptors of brain regions, which could not fully
reflect individual difference in the brain.

Radiomics is an emerging technology that extracts high-
throughput quantitative features from images and has been
widely found to correlate with the histological, molecular, and
clinical markers in various diseases (Lambin et al. 2017; Liu,
Wang, et al. 2019). The radiomic features are multiview, including
both macroscopic feature sets (e.g. shape-based feature) and
microscopic feature sets (e.g. texture feature). Specifically, the
texture features offer voxel-level quantification at different
spatial scales within the image, which may reflect the underlying
pathophysiological characteristics (Tomaszewski and Gillies
2021). Previously, Zhao, Zheng, et al. (2021) proposed a radiomics-
based structural connectivity construction (R2SNs) method
and showed impressive attributes and application potentials.
Inspired by the idea, we proposed an enhanced individualized
radiomics-based structural similarity network (iRSSN) in T1
images. iRSSN takes advantage of the state-of-the-art voxel-based
morphometry (VBM) to preprocess the original T1 and uses a
selected set of radiomic features to construct the individualized
network on gray matter. Specially, comprehensive attributes
(e.g. graph theory analysis, test–retest reliability, individual
identification, and parameter effect) and applications (e.g. MCI
subtype discrimination and fluid intelligence prediction) of iRSSN
were evaluated. Taken together, we expect iRSSN can offer a
distinctive, reliable, and informative structural network in T1
image, which could be integrated with other types of brain
networks to better predict the brain phenotype and brain disease.

Materials and methods
Participants
Human connectome project dataset
Data were obtained from Human connectome project (HCP)
S1200 release, which included 1,113 high spatial-resolution T1-
weighted images and 1,003 high spatial–temporal-resolution rs-
fMRI images. Among these subjects, 46 subjects participated in a
retest scan. Four subjects in the retest dataset were excluded
because one subject did not have fMRI data, one subject did
not complete the first session of fMRI scan, and two subjects
did not complete the second session of fMRI scan. At last, 42
subjects who completed the entire scan protocol for a second
time were used in our study (termed as “Test–Retest dataset”).
All images were collected on a 3T Siemens Skyra (Siemens,
Erlangen, Germany) scanner. The T1-weighted images and two
sessions of the rs-fMRI images were acquired in two consecutive
days using MPRAGE sequence and multiband pulse sequence,
respectively (TR = 2,400/720 ms, TE = 2.14/33.1 ms, FA = 8/52◦,
FOV = 224 × 224/208 × 180 mm2, and voxel size = 0.7 × 0.7 ×
0.7 mm3/2 × 2 × 2 mm3). The demographic information about
the selected 1,003 subjects with both sMRI and rs-fMRI is listed in
Table S1 of Supplementary Information.

Alzheimer’s disease neuroimaging initiative dataset
A total of 717 mild cognitive impairment (MCI) subjects with
T1-weighted structural MRI images were downloaded from the
ADNI dataset (https://adni.loni.usc.edu/), including 286 subjects
converted to AD (progressive MCI) within 36 months and 431 that
did not convert (stable MCI). The detailed demographic informa-
tion (see Table S2) and inclusion/exclusion criteria are listed in
Supplementary information. All data were scanned on 3T MRI
systems using MPRAGE sequence (TR = 2,300 ms, TE = 2.95 ms,
FA = 9◦, TI = 900 ms, slices = 176, and voxel size = 1 × 1 × 1.2 mm3).

Multicenter test–retest dataset
This dataset (Tong et al. 2020) includes three healthy traveling
adults that were scanned with identical settings in 10 MRI centers
(all 3T MR MAGNETOM Prisma), and the scans were performed by
the same operator with a fixed operating procedure. T1-weighted
structural images were acquired using an MP2RAGE sequence,
and the key parameters were as follows: TR = 5 s, TE = 2.9 ms,
FOV = 211 × 256 × 256 mm3, voxel size = 1.2 × 1 × 1 mm3.

Ethics approval and consent to participate
Ethical approval of ADNI data was obtained by the ADNI inves-
tigators. The institutional review boards of all participating sites
approved the study at their respective institutions. All ADNI par-
ticipants provided written informed consent before the start of
the study.

All study procedures of the Human Connectome Project study
protocol were approved by the Institutional Review Board at the
Washington University in St. Louis.

The multicenter test–retest dataset was confirmed by the insti-
tutional review board of Xuanwu Hospital, Capital Medical Uni-
versity, Beijing, China, and all volunteers had signed the informed
consent forms.

Definition of iRSSN
Radiomics provides a large number of quantitative imaging fea-
tures enabling efficient detection of subtle characteristics within
images, which may thus be informative for disease diagnosis,
prognosis, and treatment responses (Tomaszewski and Gillies
2021). Radiomic features can be divided into macroscopic and
microscopic categories, and the macroscopic features describe the
holistic characteristics such as shape-related features (e.g. vol-
ume, surface area), while microscopic features (e.g. texture) depict
the relative relationship with neighbor voxels. In our method, the
state-of-the-art VBM (Ashburner 2007; Zhao, Ma, et al. 2021) anal-
ysis is adopted to acquire the preprocessed gray matter images,
which was conducted by CAT 12 software (Version 12.7, r1700).
In detail, the VBM pipeline contains two consecutive parts: ini-
tial voxel-based processing and refined voxel-based processing.
The first part contains SANLM denoise (Manjon et al. 2010),
resampling into anisotropic voxel, initial bias-correction, affine
registration, and unified segmentation (Ashburner and Friston
2005), while the second part includes segmentation refinement,
skull stripping, regional parcellation, local intensity correction,
AMAP/PVE segmentation (Tohka et al. 2004), and Geodesic Shoot-
ing registration (Ashburner and Friston 2011). Every subject gener-
ated a standardized gray matter image with a 1.5-mm voxel size,
which was then smoothed by a 4-mm FWHM Gaussian kernel.
After that, the gray matter image was divided into 246 ROIs
according to the Brainnetome atlas (Fan et al. 2016), and radiomic
features were computed for every ROI of the brain. In previous
studies (Wu et al. 2016; Liu, Jing, et al. 2019; Liu et al. 2021),
radiomics has been defined with different amounts of feature sets
(from dozens to thousands), but many of them may be highly
correlated with each other; therefore, only a selected radiomic
feature sets were adopted to construct iRSSN. In particular, a
total of 43 radiomic features were selected, including 3 first-
order features, 9 gray-level co-occurrence matrix (GLCM) features,
13 gray-level run-length matrix (GLRLM) features, 13 gray-level
size zone matrix (GLSZM) features, and 5 neighborhood gray-tone
difference matrix (NGTDM) features. More detailed description
about these features could be found in Vallieres et al. (2015) and
Fig. S1 in Supplementary Information. In addition, the calculating
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Fig. 1. The workflow of the proposed iRSSN.

formula of each radiomic feature were provided in the open-
source code (https://github.com/zhema620/iRSSN). After that, the
radiomic features of all subject were normalized with a demean-
ing manner, i.e. for each subject, every radiomic feature of one
brain region was divided by its mean value from all brain regions,
and the Pearson correlation coefficients were computed between
each pairwise ROIs, resulting in an individual 246 × 246 iRSSN
matrix for every subject. The whole construction pipeline of iRSSN
is illustrated in Fig. 1.

Characteristics evaluation of iRSSN
Graph theory analysis of iRSSN
To understand the network organization of iRSSN, graph the-
ory analysis was conducted on the HCP dataset to investigate
the complex network properties. Four types of network proper-
ties were calculated for iRSSN: (i) characteristic path length (Lp),
clustering coefficient (Cp), and small worldness (α) (Watts and
Strogatz 1998); (ii) global efficiency (Eg) and local efficiency (Eloc)
(Latora and Marchiori 2001); (iii) network modularity computed
by the greedy algorithm (Newman 2006). The modularity of the
network means the nodes within a module are densely connected
but sparsely linked to nodes belonging to other modules; and
(iv) degree distribution and a network hub that is defined as
nodes with more than mean plus two standard deviation (SD)
connective edges (Bullmore and Sporns 2009). The detailed def-
inition about these graph metrics are listed in Supplementary
information. Given the absence of optimal sparsity threshold, a
series of sparsity settings (from 5% to 40% with an interval of 5%)
were adopted, and the corresponding complex network attributes
were obtained at each sparsity threshold using Brain Connectivity
Toolbox (http://www.brain-connectivity-toolbox.net/).

Test–retest reliability of iRSSN
Test–retest reliability quantifies the consistency of one MRI metric
on repeated scanning at different time points, and a good MRI
biomarker should display high test–retest reliability. The HCP test–
retest dataset (42 subjects in 1 center) and multicenter dataset
(3 subjects in 10 centers) were adopted to check the test–retest
performance of iRSSN, and the intraclass correlation coefficient

(ICC) was used to measure the test–retest reliability, which is
defined in Supplementary information. Notably, to simplify the
visualization of ICC results, ICC values in each region of the
Brainnetome atlas were averaged into the Yeo 7 networks and an
additional subcortical network (Yeo et al. 2011).

Individual identification with iRSSN
A good MRI biomarker should not only be reliable but also reflect
the individual variability. To ascertain the individual identification
performance of iRSSN, the HCP test–retest dataset was again
used to discover whether iRSSN could distinguish every single
subject like fingerprint. The test dataset or retest dataset was
alternatively served as a “target” session and the other as a
“database” session (Finn et al. 2015). Every subject in the “target”
session was used to confirm the most similar subject in the
“dataset” session through the Pearson’s correlation coefficient of
paired iRSSN. If the identified subject matched the target one,
its individual identification succeeded; otherwise, it failed. The
final accuracy was reported by the average of two identification
tasks. To test whether the accuracy was significantly better than
random chance, a permutation test (n = 1,000) was performed on
the dataset. Specifically, a random “database” session was created
by shuffling individual iRSSN in the database session, and then
every subject in the “target” session searched for the most similar
subject in the random “database” session. Then, the individual
iRSSN of the “database” session was shuffled, and the identi-
fication task was similarly performed on the “target” session.
The mean accuracy of two identification tasks were averaged as
one time of identification result, and the above procedures were
repeated 1,000 times to form a null distribution. The P-value was
defined as the proportion of the accuracy no less than the actual
accuracy in the null distribution.

Potential applications of iRSSN
sMCI/pMCI discrimination with iRSSN
Currently, there are no effective treatment manners for
Alzheimer’s disease (AD), and it thus becomes a key goal to timely
diagnose the high-risk persons due to AD, who will receive benefits
from early clinical intervention. Among MCI patients, some will
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change into AD in short years, which is called progressive MCI
(pMCI), while the others will keep their cognitive abilities in long
years, which is named stable MCI (sMCI). Discrimination between
pMCI and sMCI patients with MRI is clinically important but
challenging (Lian et al. 2020; Zhou et al. 2020). Therefore, this
task was selected to exemplify the clinical feasibility of iRSSN in
disease classification. The classification pipeline was similar to
our previous studies (Ma et al. 2020; Zhao et al. 2021). Basically, the
iRSSN-based classification model was constructed with support
vector machine (SVM) with “rbf” kernel, and Lasso was used for
feature reduction since iRSSN is high dimensional. A grid search
method was adopted to ascertain the optimal parameters of SVM
(γ and C) and Lasso (λ), and a 10-fold cross-validation was adopted
to evaluate the overall performance of the model. It should be
mentioned that a stratified sampling based on group label had
been used in creating the folds because of the unbalanced sample
size in each group, and the optimal parameters were ascertained
with an inner 5-fold cross-validation while the testing dataset
was completely untouched during the model training. The whole
process was repeated 10 times with different training/testing
datasets each time, and the final performance was reported by
the mean value of sensitivity (Sen), specificity (Spe), accuracy
(Acc), and the area under the curve (AUC).

Fluid intelligence prediction with iRSSN
Fluid intelligence represents the ability in reasoning and problem
solving, which can be reflected by brain function and structure
(Chen et al. 2020; Jiang, Calhoun, et al. 2020; Jiang, Calhoun,
et al. 2020; Feng et al. 2022). To validate the application of iRSSN
in individual phenotype prediction, 1,003 subjects with both rs-
fMRI and structural MRI data were enrolled from the HCP dataset
to predict individual fluid intelligence. The whole pipeline was
similar to our previous studies (Wei et al. 2020; Feng et al. 2022).
First, the covariates including age and gender were regressed
out from iRSSN; then, a bootstrapping-based feature selection
method (Wei et al. 2020) was used to select the reliable features
in training dataset. In the feature selection process, the train-
ing dataset was resampled by bootstrap without replacement
100 times and 70% subjects each time. Features that correlated
with fluid intelligence (P < 0.05, Spearman correlation) at least
90 times in the resampled dataset were finally used to train a
Lasso regression model. Specifically, an inner-nested 5-fold cross-
validation was used to determine the optimal parameters (i.e.
λ) in the Lasso model. A 10-fold cross-validation on the whole
dataset was employed to evaluate the prediction accuracy, and
the subjects belonging to the same family was kept in a fold. The
prediction performance was assessed by correlating the predicted
fluid intelligence with actual values, and the whole procedures
were repeated 10 times with different training/testing datasets
each time and averaged to gain the final prediction accuracy.

Comparison with other methods
Resting-state functional connectivity (RSFC) is the most widely
used brain network, which is generated from the functional MRI
images; therefore, RSFC was selected as the comparison baseline
for imaging biomarker attributes. Once iRSSN can be effectively
fused with RSFC, i.e. iRSSN provides complementary information
to RSFC, it will show great potentials in different disease
discrimination/prediction tasks. In the study, we compared
iRSSN and RSFC in test–retest reliability, individual identification,
and fluid intelligence prediction. Moreover, since some key
complex network properties (e.g. small-worldness, modularity,
network hub) are qualitative and several previous studies

(Achard and Bullmore 2007; Bullmore and Sporns 2009) have
already reported them in RSFC, these network properties
were not computed for RSFC anymore. For sMCI/pMCI clas-
sification, because many subjects in ADNI dataset did not
have the resting-state fMRI data, the sMCI/pMCI classifica-
tion was also not compared between iRSSN and RSFC. The
preprocessing steps to generate RSFC can be referred to our
previous study (Wei et al. 2020) and were briefly summarized in
Supplementary information.

In addition, in order to demonstrate that iRSSN performed
better than the conventional morphological metrics in the
sMCI/pMCI classification, the atlas-based brain volume infor-
mation was also used for model construction, and all detailed
procedures were consistent with iRSSN except the input features.
The brain volume information was obtained by CAT 12 software
with Brainnetome atlas, and every subject had a volume vector of
246 regions.

R2SNs (Zhao, Zheng, et al. 2021) is another type of radiomics-
based structural network on T1 images, and we compared it
thoroughly with iRSSN in both tasks including fluid intelli-
gence prediction and sMCI/pMCI classification. The detailed
procedures in prediction/classification model construction were
kept the same as iRSSN except the input features, which were
generated using the code (https://github.com/YongLiuLab/R2SN_
construction).

Other methodological considerations
A previous study (Wang et al. 2016) had reported that smooth-
ness obviously affected the structural network properties, so the
influences of smoothness (smoothed or unsmoothed GM images)
on iRSSN were also assessed. Here, we chose the test–retest relia-
bility and sMCI/pMCI classification to exemplify the influence of
smoothness. We did not select the fluid intelligence prediction as
an evaluation task because our previous study (Feng et al. 2022)
had verified a positive relationship between test–retest reliability
and the prediction performance.

Next, the effect of feature normalization manner on iRSSN was
also evaluated, and three simple feature normalization manners
including demeaning, Max-Min, and Max-Min (map into [−1, 1])
were compared in sMCI/pMCI classification. The definitions of
the latter two manners are given in Supplementary information.
Because all these normalization manners retained the relative
magnitude of original features, we did not select the fluid intelli-
gence prediction for evaluation.

Results
Graph theory properties of iRSSN
Under different sparsity thresholds (0.05 ∼ 0.40) on the HCP
dataset, iRSSN displayed approximately equivalent shortest path
lengths (λ ≈ 1) and higher clustering coefficients compared with
the mean of 1,000 random networks, which implied the prominent
small-world properties (σ = γ /λ > 1) (Fig. 2A). Moreover, when
the sparsity threshold became large, the clustering coefficient
(Cp), local efficiency (Eloc), and global efficiency (Eg) increased
accordingly, while characteristic path length (Lp) decreased
rapidly (Fig. 2B and C). Here, the clustering coefficient depicts
the extent of local cluster or cliquishness of the network, and
local/global efficiency measures the extent of information prop-
agation within the local/whole network, while the characteristic
path length quantifies the extent of overall routing efficiency
of the network (Wang et al. 2009). All these complex network
properties of iRSSN displayed comparable patterns with RSFC
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Fig. 2. The network properties of iRSSN. A) Small-world properties of the network over a range of sparsity. B) The characteristic path length (Lp) and
clustering coefficient (Cp) of the network. C) Global efficiency (Eg) and local efficiency (Eloc). D) Degree distribution, E) network modularity, and F) the
spatial distribution of hubs labelled by the modularity results. Abbreviation: BG, basal ganglia; SFG, superior frontal gyrus; STG, superior temporal gyrus;
PrG, precentral gyrus; MTG, middle temporal gyrus; PCun, precuneus; CG, cingulate gyrus; MVOcC, medioventral occipital cortex; Tha, thalamus.

(Achard and Bullmore 2007), indicating that iRSSN may serve as
a biologically meaningful structural network.

In addition to complex network properties, the degree distri-
bution of the iRSSN was also fitted using exponential fitting,
power law fitting, and exponential truncated power law fitting.
The goodness-of-fit (the value closer to 1 indicates a better fit-
ting) for three fitting methods were, respectively, 0.82, 0.47, and
0.90. Thus, the degree distribution was well fitted (Fig. 2D) by an
exponentially truncated power-law form: p(k) = a × kα−1e(−k/k)

with an estimated exponenta = 0.90, α = 1.19, kc = 34.05.
The distribution indicated that some hub nodes exist in iRSSN,

and 13 hub nodes were identified (Fig. 2F), namely the superior
frontal gyrus, superior temporal gyrus, precentral gyrus, middle
temporal gyrus, precuneus, cingulate gyrus (including two subre-
gions), medioventral occipital cortex, basal ganglia, and thalamus
(including four subregions). The detailed position and description
about these hub nodes can be found in Supplementary infor-
mation. Network modularity analysis revealed that the whole
brain iRSSN can be divided into six independent modules (Fig. 2E).
The spatial distribution of these modules was largely different
from the subnetworks of RSFC (Yeo et al. 2011), and the highest
spatial overlap was achieved between an iRSSN module and the
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dorsal attention network of RSFC with a dice coefficient (defined
as 2 × [intersected region]/[sum of region A and region B]) of
0.46. Thus, iRSSN provided a distinct brain network organization
complementary to RSFC.

Test–retest reliability of iRSSN
As shown in Fig. S2, iRSSN showed excellent whole brain relia-
bility (mean ICC = 0.86, SD = 0.08), and more than 90% connective
edges showed ICC higher than 0.75. In comparison, the ICC per-
formances of RSFC were lower (mean ICC = 0.58, SD = 0.15), and
most connective edges had ICC lower than 0.75. Besides, iRSSN
displayed acceptable reliability (mean ICC = 0.60, SD = 0.02) in the
multicenter dataset.

Individual identification with iRSSN
The accuracy of individual identification (brain fingerprint) with
iRSSN was 100%, while RSFC had a slightly lower accuracy of
94.05% on the HCP test–retest dataset. In addition, both iRSSN
and RSFC displayed significant P values (P < 0.001) in the permu-
tation test. The result demonstrated iRSSN displayed fingerprint-
like characteristics, which could effectively reveal the individual
variability among subjects.

sMCI/pMCI discrimination with iRSSN
Figure 3A showed the performances of sMCI/pMCI classification
by iRSSN, and the accuracy, sensitivity, and specificity were 0.805,
0.729, and 0.855, respectively, with a corresponding AUC of 0.882
(Fig. 3B). A total of 91 connective edges that conserved in every
fold of cross-validation (Fig. 3C) were the most discriminative
features between sMCI and pMCI patients. Most of the features
were internetwork connections, and all eight brain networks were
involved in the classification. Moreover, many of the 91 edges were
long-range (>75 mm) connections, implying that the network
efficiency may be largely reduced in pMCI compared with sMCI.
Besides, the subcortical network, ventral attention network, and
visual network also displayed some intranetwork alterations in
sMCI/pMCI classification, indicating that these networks may be
vulnerable to the progressively impaired cognition. Furthermore,
several key nodes that connected densely with others (i.e. large
radius) in 91 features were also confirmed, mainly including
bilateral parahippocampus, right hippocampus, and left superior
parietal lobule.

Fluid intelligence prediction with iRSSN
Figure 3D shows the prediction results for fluid intelligence:
iRSSN obtained an R value (between predicted and real values)
of 0.23 (P < 0.001), while RSFC attained to 0.22 (P < 0.001), and
the performance was improved to 0.31 (P < 0.001) when they
were combined together. Figure 3E and F illustrates respective
feature sets of iRSSN and RSFC that appeared in every fold of
cross-validation, and the feature number (n = 34) of iRSSN was
significantly lower than RSFC (n = 1,262). Additionally, all eight
networks were involved in both iRSSN and RSFC feature sets.

Comparison with other methods
The sMCI/pMCI classification models using atlas-based volume
information achieved relatively low results (accuracy: 0.730, sen-
sitivity: 0.605, specificity: 0.813, and AUC: 0.787), demonstrating
the superiority of iRSSN than conventional morphological infor-
mation in MCI subtype discrimination.

Zhao’s method R2SNs is a state-of-the-art structural radiomic
network, and we compared it with iRSSN comprehensively and

found that (i) iRSSN (accuracy: 0.805, specificity: 0.729, speci-
ficity: 0.855, and AUC: 0.882) achieved obviously better sMCI/pMCI
classification performance than R2SNs (accuracy: 0.717, sensi-
tivity: 0.629, specificity: 0.758, and AUC: 0.786). (ii) Single R2SNs
displayed similar fluid intelligence prediction performance with
iRSSN, but its combination performance with RSFC was lower
than iRSSN (Table 1, P < 0.05). Specifically, the number (n > 4,000)
of features (Fig. S3) adopted by R2SNs was significantly larger
than iRSSN, RSFC, and the sample size, which may indicate the
potential overfitting risk. In addition, when using the same num-
ber (according to the sorted weights) of features from R2SNs as
iRSSN, its prediction performance had decreased to r = 0.16, and
the adopted features were also largely different from iRSSN.

Other methodological considerations
Compared with the unsmoothed GM images, a 4-mm FWHM
Gaussian smoothness not only improved the test–retest reliability
but also enhanced the sMCI/pMCI classification: when smooth-
ness was not adopted, a decreased mean ICC = 0.85 (ICCstd = 0.03)
and a decreased sMCI/pMCI classification accuracy = 73.4% (sen-
sitivity: 62.0%, specificity: 81.7%) were obtained. In particular,
about 88.5% edges showed an ICC higher than 0.75, and about
97.6% edges showed an ICC higher than 0.60.

In addition, when comparing three different feature nor-
malization manners, the demeaning manner achieved the
best sMCI/pMCI classification performance, and the other two
manners performed relatively worse (Max-Min: accuracy = 79.9%,
sensitivity = 72.5%, specificity = 85.1%; Max-Min (map into [−1, 1]):
accuracy = 78.9%, sensitivity = 70.5%, specificity = 84.6%) than it.

Discussion
In this paper, we proposed a novel iRSSN from the T1 images
and demonstrated it with remarkable characteristics in test–
retest reliability, complex network properties and individual iden-
tification and exemplified it in two representative applications:
pMCI/sMCI discrimination and fluid intelligence prediction. The
results revealed that iRSSN provides a reasonable, reliable, and
unique manner to understand the structural similarity in the
brain, which performs better than some state-of-the-art brain
networks in many aspects.

The differences between the proposed iRSSN and Zhao’s
method R2SNs (Zhao, Zheng, et al. 2021) are multiple: First, the
preprocessing steps for T1 images between two methods are
different: iRSSN adopts a series of noise reduction steps such
as SANLM denoise, local intensity correction, and partial volume
effect correction, while R2SNs only includes N4 bias correction
before registration. Second, the registration algorithm in R2SNs is
symmetric image normalization (SyN) by ANTs software, while
iRSSN uses geodesic shooting registration based on CAT 12
software, which have been compared in the brain MRI registration
(Ashburner and Friston 2011). Third, the used radiomic feature
sets and normalization manner are also different: iRSSN adopts
43 radiomic features (including 3 intensity features and the
other texture features) with a demeaning normalization, while
R2SNs uses 47 radiomics features (including 13 intensity features
and the other texture features) with a Max-Min normalization.
The connective patterns in the structural network are thereby
distinct between iRSSN and R2SNs, and Fig. 4 illustrated the
connective matrix and corresponding connective value histogram
for one randomly selected subject from the HCP dataset. iRSSN
provides a sparser connectivity matrix than R2SNs, which is
more consistent with the previous finding (Bassett and Bullmore
2006) that the brain anatomical connectivity is sparse. Specially,
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Fig 3. A) The classification results of sMCI and pMCI with iRSSN. B) The AUC for sMCI/pMCI discrimination. C) The discriminative features in
pMCI/sMCI classification. D) The prediction accuracy of fluid intelligence. E) The discriminative features of iRSSN for fluid intelligence prediction.
F) The discriminative features of RSFC for fluid intelligence prediction. Abbreviation: VIS, visual network; SMN, somatomotor network; DAN, dorsal
attention network; VAN, ventral attention network; LIM, limbic network; FPN, frontoparietal network; DMN, default mode network; SCN, subcortical
network.

Table 1. The model performance comparison in fluid intelligence prediction.

iRSSN Zhao’s method (R2SNs)20

Prediction (R value) SC SC + FC SC SC + FC
0.23 ± 0.06 0.31 ± 0.05 0.23 ± 0.09 0.27 ± 0.07

Abbreviation: SC, structural connectivity; FC, functional connectivity; R value: the correlation between predicted and real fluid intelligence (bold value means
the highest performance).

the negative correlations exist in both iRSSN and R2SNs, which
stand for the opposite radiomic feature patterns between
regions. There are more negative connectivities in iRSSN that are
mainly located at the subcortical nuclei, such as the thalamus,
hippocampus, amygdala, and basal ganglia. Fourth, iRSSN
calculates radiomics in segmented gray matter images, which can
reduce the background inconsistency caused by the pathological
or physiological alterations (e.g. glioma, edema) in surrounding
tissues, facilitating the statistical comparisons between patients
and healthy controls. With the above-mentioned differences
between iRSSN and R2SNs, iRSSN displayed obvious advantages
in sMCI/pMCI classification, implying the extensive applications
of iRSSN in the differential diagnoses of various brain diseases.
In addition, though R2SNs performs similarly with iRSSN in fluid
intelligence prediction, the feature sets decided by iRSSN are
extremely sparser than R2SNs, and its fusion prediction with
RSFC is also better than R2SNs. These results demonstrate that
iRSSN can detect more unique structural representation and
better reflect the individual difference for fluid intelligence than
R2SNs, resulting in more interpretable results.

iRSSN is also different from other types of structural net-
work based on the T1 image. Tijms’ method (Tijms et al. 2012)
quantifies the relationship between predefined cubes from T1
image; however, the position of these cubes doesn’t comply with
the anatomical border of brain regions, which may limit the

interpretation of network nodes in the network. Another com-
mon type of structural network uses multiple morphological
features (Li, Yang, et al. 2017; Seidlitz et al. 2018) as a vec-
tor for network construction. These morphological features are
usually calculated on the vertex-based surface space, which is
more time-consuming than the voxel-based volume space. In
addition, these features belong to macroscopic descriptors in
contrast to texture features, thus ignoring the microscopic view-
point within the image. Taken together, iRSSN is an anatomically
interpretable individualized structural network that incorporates
both microstructural and macrostructural characteristics.

Although the definite physiological significance of iRSSN is
unclear, it has been reported that radiomic features record the
subtle alterations within the image, which are related with the
synaptic, genetic, and cellular characteristics (Alexander-Bloch
et al. 2013). Moreover, iRSSN has typical characteristics of a good
imaging biomarker: high test–retest reliability and fingerprinting
performance, which are very essential for individualized clinical
diagnosis. Moreover, iRSSN displays similar complex network
properties as other well-known brain biological networks (Achard
and Bullmore 2007; Gong et al. 2009; Cai et al. 2018), such
as the small-worldness, indicating that it is like a biologically
meaningful and economical brain network. With the increase
of sparsity thresholds, the characteristic path length of iRSSN
becomes smaller, while the clustering coefficient and local and
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Fig. 4. The connectivity matrix and the corresponding histogram of correlational values of the structural network generated by our method (iRSSN) and
Zhao’s method (R2SNs) on a randomly selected HCP subject (ID: 996792) A) structural matrix by R2SNs. B) Structural matrix by iRSSN. C) The histogram
of correlational values in Fig. 4A. D) The histogram of correlational values in Fig. 4B.

global efficiency become larger. These changing patterns coincide
with other brain networks like RSFC, demonstrating that iRSSN
is a reasonable structural brain network. In addition, the degree
distribution of iRSSN shows an exponentially truncated power-
law form, implying the existence of hub regions and module in
iRSSN. The hub regions are mainly located at the precuneus,
thalamus, basal ganglia, superior temporal gyrus, cingulate gyrus,
and middle temporal gyrus, which are partly consistent with
hubs (Bell and Shine 2016; Oldham and Fornito 2019) in other
networks of the adult brain. These hub regions are involved in
lots of cognitive and behavioral domains, such as self-awareness
(Lou et al. 2017), cognitive computation (Rikhye et al. 2018),
speech processing (Yi et al. 2019), language (Nadeau 2021), and
prosocial behavior (Lockwood et al. 2020). Furthermore, the
spatial distribution of iRSSN modules is largely different from
the RSFC modules, and the largest spatial overlap between any
module in iRSSN and RSFC is just with a dice coefficient of 0.46,
again indicating that iRSSN may provide a unique perspective to

understand the brain in contrast to RSFC, which could be
extended to various individualized prediction tasks with the
fusion manner.

To timely recognize pMCI from sMCI patients is clinically
important but challenging, and most studies have achieved
the classification accuracies lower than 0.80 (Lian et al. 2020;
Zhou et al. 2020). For comparison, we also used the atlas-based
volume information for sMCI/pMCI classification, and the model
just obtained an accuracy of 0.730; thus, only the conventional
morphological information is not enough for effective sMCI/pMCI
classification. A possible reason may be due to the adopted
macroscopic structural features (e.g. volume, cortical thickness),
which may thus lose some sensitive microscopic angle for
diagnosis. In contrast, iRSSN obtained an inspiring accuracy of
0.805 and an AUC of 0.882, and a total of 91 discriminative features
were found. Many of the connective features were internetwork
and long range, involving the dorsal/ventral attention network,
default mode network, and visual network, and the related key
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hubs were the bilateral parahippocampus, right hippocampus,
and left superior parietal lobule. These findings were persistently
reported in MCI patients (Liu et al. 2016; Li, Jing, et al. 2017;
Long et al. 2018; Ma et al. 2020), and future studies can further
combine iRSSN with other brain networks together to improve
the diagnostic accuracy for pMCI patients.

It should be mentioned that several factors may affect iRSSN
and its clinical applications. First, smoothness is found to be
helpful for iRSSN in improving both test–retest reliability and
the sMCI/pMCI classification. One possible explanation is that
smoothness can effectively suppress image noise, leading to more
accordant radiomic features among subjects. Second, the feature
normalization manner for iRSSN also influenced the sMCI/pMCI
classification, and the demeaning manner achieved the best per-
formance. However, we infer that the optimal feature normal-
ization manner may be task specific. Once iRSSN is utilized for
another task or dataset, the normalization manner should be opti-
mized again. Third, the ideal radiomic feature sets to construct
iRSSN is not assessed, and further studies can be carried out to
ascertain whether better performance would be achieved when
using other features.

Some limitations exist in the current study. First, for clinical
T1 images, the strength of the MRI scanner and the initial/nor-
malized voxel size of the T1 image are commonly not identical at
different centers/hospitals, and it is unknown whether these fac-
tors may affect iRSSN. Second, the multicenter test–retest dataset
in the study adopted a more time-consuming MP2RAGE sequence
compared with the conventional MPRAGE sequence, which may
be another influencing factor. Third, iRSSN is just limited in the
gray matter of the brain; however, white matter has also been
reported to have an important role in brain function (Wang et al.
2022). Therefore, iRSSN can extend to white matter to explore
their usages in phenotype prediction and clinical diagnosis in
future. Fourth, the study just compares iRSSN with RSFC in some
ways, but the correlations with other types of brain networks like
the brain fiber network from diffusion tensor imaging and the
metabolic network from positron emission tomography are still
unknown, which need further studies afterward.

Conclusion
In this paper, we introduced a novel individualized radiomics-
based structural connectivity metric called iRSSN, and it displayed
good complex network properties and biomarker attributes and
achieved inspiring performances in sMCI/pMCI discrimination
and fluid intelligence prediction. Overall, our study suggested
that iRSSN could uncover distinct brain structural relationships
complementary to the widely used RSFC, which has significant
potential in various phenotypic predictions and disease classifi-
cations.
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